Apple Patent | Creative Camera

Patent: Creative Camera

Publication Number: 20200045245

Publication Date: 20200206

Applicants: Apple

Abstract

The present disclosure generally relates to displaying visual effects in image data. In some examples, visual effects include an avatar displayed on a user’s face. In some examples, visual effects include stickers applied to image data. In some examples, visual effects include screen effects. In some examples, visual effects are modified based on depth data in the image data.

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application is a continuation of U.S. application Ser. No. 16/143,097, entitled “Creative Camera,” filed Sep. 26, 2018, which claims the benefit of: U.S. Provisional Application No. 62/668,227, entitled “Creative Camera,” filed May 7, 2018; and U.S. Provisional Application No. 62/679,934, entitled “Creative Camera,” filed Jun. 3, 2018, the contents of which are hereby incorporated by reference in their entirety.

FIELD

[0002] The present disclosure relates generally to computer user interfaces, and more specifically to techniques for displaying visual effects.

BACKGROUND

[0003] Visual effects are used to enhance a user’s experience when capturing and viewing media using electronic devices. Visual effects can alter the appearance of image data or can represent an idealized or completely fictional representation of an environment captured in an image.

BRIEF SUMMARY

[0004] Some techniques for displaying visual effects using electronic devices, however, are generally cumbersome and inefficient. For example, some existing techniques use a complex and time-consuming user interface, which may include multiple key presses or keystrokes. Existing techniques require more time than necessary, wasting user time and device energy. This latter consideration is particularly important in battery-operated devices.

[0005] Accordingly, the present technique provides electronic devices with faster, more efficient methods and interfaces for displaying visual effects. Such methods and interfaces optionally complement or replace other methods for displaying visual effects. Such methods and interfaces reduce the cognitive burden on a user and produce a more efficient human-machine interface. For battery-operated computing devices, such methods and interfaces conserve power and increase the time between battery charges.

[0006] A method is described. The method is performed at an electronic device having a camera, a display apparatus, and one or more input devices. The method comprises: displaying, via the display apparatus, a messaging user interface of a message conversation including at least a first participant, the messaging user interface including a camera affordance; detecting, via the one or more input devices, a first input directed to the camera affordance; in response to detecting the first input, displaying a camera user interface, the camera user interface including a capture affordance; detecting, via the one or more input devices, a second input directed to the capture affordance; in response to detecting the second input: capturing image data using the camera; ceasing to display the capture affordance; and displaying a send affordance at a location in the camera user interface that was previously occupied by the capture affordance; detecting, via the one or more input devices, a third input directed to the send affordance; and in response to detecting the third input, initiating a process to send the captured image data to the first participant.

[0007] A non-transitory computer-readable storage medium is described. The non-transitory computer-readable storage medium stores one or more programs configured to be executed by one or more processors of an electronic device with a camera, a display apparatus, and one or more input devices, the one or more programs including instructions for: displaying, via the display apparatus, a messaging user interface of a message conversation including at least a first participant, the messaging user interface including a camera affordance; detecting, via the one or more input devices, a first input directed to the camera affordance; in response to detecting the first input, displaying a camera user interface, the camera user interface including a capture affordance; detecting, via the one or more input devices, a second input directed to the capture affordance; in response to detecting the second input: capturing image data using the camera; ceasing to display the capture affordance; and displaying a send affordance at a location in the camera user interface that was previously occupied by the capture affordance; detecting, via the one or more input devices, a third input directed to the send affordance; and in response to detecting the third input, initiating a process to send the captured image data to the first participant.

[0008] A transitory computer-readable storage medium is described. The transitory computer-readable storage medium stores one or more programs configured to be executed by one or more processors of an electronic device with a camera, a display apparatus, and one or more input devices, the one or more programs including instructions for: displaying, via the display apparatus, a messaging user interface of a message conversation including at least a first participant, the messaging user interface including a camera affordance; detecting, via the one or more input devices, a first input directed to the camera affordance; in response to detecting the first input, displaying a camera user interface, the camera user interface including a capture affordance; detecting, via the one or more input devices, a second input directed to the capture affordance; in response to detecting the second input: capturing image data using the camera; ceasing to display the capture affordance; and displaying a send affordance at a location in the camera user interface that was previously occupied by the capture affordance; detecting, via the one or more input devices, a third input directed to the send affordance; and in response to detecting the third input, initiating a process to send the captured image data to the first participant.

[0009] An electronic device is described. The electronic device comprises: a camera; a display apparatus; one or more input devices; one or more processors; and memory storing one or more programs configured to be executed by the one or more processors, the one or more programs including instructions for: displaying, via the display apparatus, a messaging user interface of a message conversation including at least a first participant, the messaging user interface including a camera affordance; detecting, via the one or more input devices, a first input directed to the camera affordance; in response to detecting the first input, displaying a camera user interface, the camera user interface including a capture affordance; detecting, via the one or more input devices, a second input directed to the capture affordance; in response to detecting the second input: capturing image data using the camera; ceasing to display the capture affordance; and displaying a send affordance at a location in the camera user interface that was previously occupied by the capture affordance; detecting, via the one or more input devices, a third input directed to the send affordance; and in response to detecting the third input, initiating a process to send the captured image data to the first participant.

[0010] An electronic device is described. The electronic device comprises: a camera; a display apparatus; one or more input devices; means for displaying, via the display apparatus, a messaging user interface of a message conversation including at least a first participant, the messaging user interface including a camera affordance; means for detecting, via the one or more input devices, a first input directed to the camera affordance; means, responsive to detecting the first input, for displaying a camera user interface, the camera user interface including a capture affordance; means for detecting, via the one or more input devices, a second input directed to the capture affordance; means, responsive to detecting the second input, for: capturing image data using the camera; ceasing to display the capture affordance; and displaying a send affordance at a location in the camera user interface that was previously occupied by the capture affordance; means for detecting, via the one or more input devices, a third input directed to the send affordance; and means, responsive to detecting the third input, for initiating a process to send the captured image data to the first participant.

[0011] A method is described. The method is performed at an electronic device having a camera and a display apparatus. The method comprises: displaying, via the display apparatus, a camera user interface, the camera user interface including: a camera display region including a representation of image data captured via the camera; and a first affordance associated with a first camera display mode; while a subject is positioned within a field of view of the camera and a representation of the subject and a background are displayed in the camera display region, detecting a gesture directed to the first affordance; in response to detecting the gesture directed to the first affordance, activating the first camera display mode, wherein activating the first camera display mode includes: displaying an avatar selection region including a selected one of a plurality of avatar options; and displaying a representation of the selected avatar option on the representation of the subject in the camera display region; while the first camera display mode is active, detecting a change in pose of the subject; and in response to detecting the change in pose of the subject, changing an appearance of the displayed representation of the selected avatar option based on the detected change in pose of the subject while maintaining display of the background.

[0012] A non-transitory computer-readable storage medium is described. The non-transitory computer-readable storage medium stores one or more programs configured to be executed by one or more processors of an electronic device with a camera and a display apparatus, the one or more programs including instructions for: displaying, via the display apparatus, a camera user interface, the camera user interface including: a camera display region including a representation of image data captured via the camera; and a first affordance associated with a first camera display mode; while a subject is positioned within a field of view of the camera and a representation of the subject and a background are displayed in the camera display region, detecting a gesture directed to the first affordance; in response to detecting the gesture directed to the first affordance, activating the first camera display mode, wherein activating the first camera display mode includes: displaying an avatar selection region including a selected one of a plurality of avatar options; and displaying a representation of the selected avatar option on the representation of the subject in the camera display region; while the first camera display mode is active, detecting a change in pose of the subject; and in response to detecting the change in pose of the subject, changing an appearance of the displayed representation of the selected avatar option based on the detected change in pose of the subject while maintaining display of the background.

[0013] A transitory computer-readable storage medium is described. The transitory computer-readable storage medium stores one or more programs configured to be executed by one or more processors of an electronic device with a camera and a display apparatus, the one or more programs including instructions for: displaying, via the display apparatus, a camera user interface, the camera user interface including: a camera display region including a representation of image data captured via the camera; and a first affordance associated with a first camera display mode; while a subject is positioned within a field of view of the camera and a representation of the subject and a background are displayed in the camera display region, detecting a gesture directed to the first affordance; in response to detecting the gesture directed to the first affordance, activating the first camera display mode, wherein activating the first camera display mode includes: displaying an avatar selection region including a selected one of a plurality of avatar options; and displaying a representation of the selected avatar option on the representation of the subject in the camera display region; while the first camera display mode is active, detecting a change in pose of the subject; and in response to detecting the change in pose of the subject, changing an appearance of the displayed representation of the selected avatar option based on the detected change in pose of the subject while maintaining display of the background.

[0014] An electronic device is described. The electronic device comprises: a camera; a display apparatus; one or more processors; and memory storing one or more programs configured to be executed by the one or more processors, the one or more programs including instructions for: displaying, via the display apparatus, a camera user interface, the camera user interface including: a camera display region including a representation of image data captured via the camera; and a first affordance associated with a first camera display mode; while a subject is positioned within a field of view of the camera and a representation of the subject and a background are displayed in the camera display region, detecting a gesture directed to the first affordance; in response to detecting the gesture directed to the first affordance, activating the first camera display mode, wherein activating the first camera display mode includes: displaying an avatar selection region including a selected one of a plurality of avatar options; and displaying a representation of the selected avatar option on the representation of the subject in the camera display region; while the first camera display mode is active, detecting a change in pose of the subject; and in response to detecting the change in pose of the subject, changing an appearance of the displayed representation of the selected avatar option based on the detected change in pose of the subject while maintaining display of the background.

[0015] An electronic device is described. The electronic device comprises: a camera; a display apparatus; one or more input devices; means for displaying, via the display apparatus, a camera user interface, the camera user interface including: a camera display region including a representation of image data captured via the camera; and a first affordance associated with a first camera display mode; means, while a subject is positioned within a field of view of the camera and a representation of the subject and a background are displayed in the camera display region, for detecting a gesture directed to the first affordance; means, responsive to detecting the gesture directed to the first affordance, for activating the first camera display mode, wherein activating the first camera display mode includes: displaying an avatar selection region including a selected one of a plurality of avatar options; and displaying a representation of the selected avatar option on the representation of the subject in the camera display region; means, while the first camera display mode is active, for detecting a change in pose of the subject; and means, responsive to detecting the change in pose of the subject, for changing an appearance of the displayed representation of the selected avatar option based on the detected change in pose of the subject while maintaining display of the background.

[0016] A method is described. The method is performed at an electronic device having a display apparatus. The method comprises: displaying, via the display apparatus, a media user interface, the media user interface including: a media display region including a representation of a media item; and an effects affordance; detecting a gesture directed to the effects affordance; in response to detecting the gesture directed to the effects affordance, displaying a plurality of effects options for applying effects to the media item concurrently with a representation of the media item, including: in accordance with a determination that the media item is associated with corresponding depth data, the plurality of effects options include a respective effects option for applying effects based on the depth data; and in accordance with a determination that the image data does not include the depth data, the respective effects option is not available for activation in the plurality of effects options.

[0017] A non-transitory computer-readable storage medium is described. The non-transitory computer-readable storage medium stores one or more programs configured to be executed by one or more processors of an electronic device with a display apparatus, the one or more programs including instructions for: displaying, via the display apparatus, a media user interface, the media user interface including: a media display region including a representation of a media item; and an effects affordance; detecting a gesture directed to the effects affordance; in response to detecting the gesture directed to the effects affordance, displaying a plurality of effects options for applying effects to the media item concurrently with a representation of the media item, including: in accordance with a determination that the media item is associated with corresponding depth data, the plurality of effects options include a respective effects option for applying effects based on the depth data; and in accordance with a determination that the image data does not include the depth data, the respective effects option is not available for activation in the plurality of effects options.

[0018] A transitory computer-readable storage medium is described. The transitory computer-readable storage medium stores one or more programs configured to be executed by one or more processors of an electronic device with a display apparatus, the one or more programs including instructions for: displaying, via the display apparatus, a media user interface, the media user interface including: a media display region including a representation of a media item; and an effects affordance; detecting a gesture directed to the effects affordance; in response to detecting the gesture directed to the effects affordance, displaying a plurality of effects options for applying effects to the media item concurrently with a representation of the media item, including: in accordance with a determination that the media item is associated with corresponding depth data, the plurality of effects options include a respective effects option for applying effects based on the depth data; and in accordance with a determination that the image data does not include the depth data, the respective effects option is not available for activation in the plurality of effects options.

[0019] An electronic device is described. The electronic device comprises: a display apparatus; one or more processors; and memory storing one or more programs configured to be executed by the one or more processors, the one or more programs including instructions for: displaying, via the display apparatus, a media user interface, the media user interface including: a media display region including a representation of a media item; and an effects affordance; detecting a gesture directed to the effects affordance; in response to detecting the gesture directed to the effects affordance, displaying a plurality of effects options for applying effects to the media item concurrently with a representation of the media item, including: in accordance with a determination that the media item is associated with corresponding depth data, the plurality of effects options include a respective effects option for applying effects based on the depth data; and in accordance with a determination that the image data does not include the depth data, the respective effects option is not available for activation in the plurality of effects options.

[0020] An electronic device is described. The electronic device comprises: a display apparatus; one or more input devices; means for displaying, via the display apparatus, a media user interface, the media user interface including: a media display region including a representation of a media item; and an effects affordance; means for detecting a gesture directed to the effects affordance; means, responsive to detecting the gesture directed to the effects affordance, for displaying a plurality of effects options for applying effects to the media item concurrently with a representation of the media item, including: in accordance with a determination that the media item is associated with corresponding depth data, the plurality of effects options include a respective effects option for applying effects based on the depth data; and in accordance with a determination that the image data does not include the depth data, the respective effects option is not available for activation in the plurality of effects options.

[0021] A method is described. The method is performed at an electronic device having a display apparatus. The method comprises: displaying, via the display apparatus, a live video communication user interface of a live video communication application, the live video communication user interface including: a representation of a subject participating in a live video communication session, and a first affordance; detecting a gesture directed to the first affordance; and in response to detecting the gesture directed to the first affordance: activating a camera effects mode; and increasing a size of the representation of the subject participating in the live video communication session.

[0022] A non-transitory computer-readable storage medium is described. The non-transitory computer-readable storage medium stores one or more programs configured to be executed by one or more processors of an electronic device with a display apparatus, the one or more programs including instructions for: displaying, via the display apparatus, a live video communication user interface of a live video communication application, the live video communication user interface including: a representation of a subject participating in a live video communication session, and a first affordance; detecting a gesture directed to the first affordance; and in response to detecting the gesture directed to the first affordance: activating a camera effects mode; and increasing a size of the representation of the subject participating in the live video communication session.

[0023] A transitory computer-readable storage medium is described. The transitory computer-readable storage medium stores one or more programs configured to be executed by one or more processors of an electronic device with a display apparatus, the one or more programs including instructions for: displaying, via the display apparatus, a live video communication user interface of a live video communication application, the live video communication user interface including: a representation of a subject participating in a live video communication session, and a first affordance; detecting a gesture directed to the first affordance; and in response to detecting the gesture directed to the first affordance: activating a camera effects mode; and increasing a size of the representation of the subject participating in the live video communication session.

[0024] An electronic device is described. The electronic device comprises: a display apparatus; one or more processors; and memory storing one or more programs configured to be executed by the one or more processors, the one or more programs including instructions for: displaying, via the display apparatus, a live video communication user interface of a live video communication application, the live video communication user interface including: a representation of a subject participating in a live video communication session, and a first affordance; detecting a gesture directed to the first affordance; and in response to detecting the gesture directed to the first affordance: activating a camera effects mode; and increasing a size of the representation of the subject participating in the live video communication session.

[0025] An electronic device is described. The electronic device comprises: a display apparatus; one or more input devices; means for displaying, via the display apparatus, a live video communication user interface of a live video communication application, the live video communication user interface including: a representation of a subject participating in a live video communication session, and a first affordance; means for detecting a gesture directed to the first affordance; and means, responsive to detecting the gesture directed to the first affordance, for: activating a camera effects mode; and increasing a size of the representation of the subject participating in the live video communication session.

[0026] A method is described. The method is performed at an electronic device having a camera and a display apparatus. The method comprises: displaying, via the display apparatus, a representation of image data captured via the one or more cameras, wherein the representation includes a representation of a subject and the image data corresponds to depth data that includes depth data for the subject; displaying, via the display apparatus, a representation of a virtual avatar that is displayed in place of at least a portion of the representation of the subject, wherein the virtual avatar is placed at simulated depth relative to the representation of the subject as determined based on the depth data for the subject, displaying the representation of the virtual avatar includes: in accordance with a determination, based on the depth data, that a first portion of the virtual avatar satisfies a set of depth-based display criteria, wherein the depth-based display criteria include a requirement that the depth data for the subject indicate that the first portion of the virtual avatar has a simulated depth that is in front of a corresponding first portion of the subject, in order for the depth-based display criteria to be met, including as part of the representation of the virtual avatar, a representation of the first portion of the virtual avatar that is displayed in place of the first portion of the subject; and in accordance with a determination, based on the depth data, that the first portion of the virtual avatar does not satisfy the set of depth-based display criteria for the first portion of the subject, excluding, from the representation of the virtual avatar, the representation of the first portion of the virtual avatar and displaying the first portion of the subject in the region that would have been occupied by the first portion of the virtual avatar.

[0027] A non-transitory computer-readable storage medium is described. The non-transitory computer-readable storage medium stores one or more programs configured to be executed by one or more processors of an electronic device with a camera and a display apparatus, the one or more programs including instructions for: displaying, via the display apparatus, a representation of image data captured via the one or more cameras, wherein the representation includes a representation of a subject and the image data corresponds to depth data that includes depth data for the subject; displaying, via the display apparatus, a representation of a virtual avatar that is displayed in place of at least a portion of the representation of the subject, wherein the virtual avatar is placed at simulated depth relative to the representation of the subject as determined based on the depth data for the subject, displaying the representation of the virtual avatar includes: in accordance with a determination, based on the depth data, that a first portion of the virtual avatar satisfies a set of depth-based display criteria, wherein the depth-based display criteria include a requirement that the depth data for the subject indicate that the first portion of the virtual avatar has a simulated depth that is in front of a corresponding first portion of the subject, in order for the depth-based display criteria to be met, including as part of the representation of the virtual avatar, a representation of the first portion of the virtual avatar that is displayed in place of the first portion of the subject; and in accordance with a determination, based on the depth data, that the first portion of the virtual avatar does not satisfy the set of depth-based display criteria for the first portion of the subject, excluding, from the representation of the virtual avatar, the representation of the first portion of the virtual avatar and displaying the first portion of the subject in the region that would have been occupied by the first portion of the virtual avatar.

[0028] A transitory computer-readable storage medium is described. The transitory computer-readable storage medium stores one or more programs configured to be executed by one or more processors of an electronic device with a camera and a display apparatus, the one or more programs including instructions for: displaying, via the display apparatus, a representation of image data captured via the one or more cameras, wherein the representation includes a representation of a subject and the image data corresponds to depth data that includes depth data for the subject; displaying, via the display apparatus, a representation of a virtual avatar that is displayed in place of at least a portion of the representation of the subject, wherein the virtual avatar is placed at simulated depth relative to the representation of the subject as determined based on the depth data for the subject, displaying the representation of the virtual avatar includes: in accordance with a determination, based on the depth data, that a first portion of the virtual avatar satisfies a set of depth-based display criteria, wherein the depth-based display criteria include a requirement that the depth data for the subject indicate that the first portion of the virtual avatar has a simulated depth that is in front of a corresponding first portion of the subject, in order for the depth-based display criteria to be met, including as part of the representation of the virtual avatar, a representation of the first portion of the virtual avatar that is displayed in place of the first portion of the subject; and in accordance with a determination, based on the depth data, that the first portion of the virtual avatar does not satisfy the set of depth-based display criteria for the first portion of the subject, excluding, from the representation of the virtual avatar, the representation of the first portion of the virtual avatar and displaying the first portion of the subject in the region that would have been occupied by the first portion of the virtual avatar.

[0029] An electronic device is described. The electronic device comprises: a camera; a display apparatus; one or more processors; and memory storing one or more programs configured to be executed by the one or more processors, the one or more programs including instructions for: displaying, via the display apparatus, a representation of image data captured via the one or more cameras, wherein the representation includes a representation of a subject and the image data corresponds to depth data that includes depth data for the subject; displaying, via the display apparatus, a representation of a virtual avatar that is displayed in place of at least a portion of the representation of the subject, wherein the virtual avatar is placed at simulated depth relative to the representation of the subject as determined based on the depth data for the subject, displaying the representation of the virtual avatar includes: in accordance with a determination, based on the depth data, that a first portion of the virtual avatar satisfies a set of depth-based display criteria, wherein the depth-based display criteria include a requirement that the depth data for the subject indicate that the first portion of the virtual avatar has a simulated depth that is in front of a corresponding first portion of the subject, in order for the depth-based display criteria to be met, including as part of the representation of the virtual avatar, a representation of the first portion of the virtual avatar that is displayed in place of the first portion of the subject; and in accordance with a determination, based on the depth data, that the first portion of the virtual avatar does not satisfy the set of depth-based display criteria for the first portion of the subject, excluding, from the representation of the virtual avatar, the representation of the first portion of the virtual avatar and displaying the first portion of the subject in the region that would have been occupied by the first portion of the virtual avatar.

[0030] An electronic device is described. The electronic device comprises: a camera; and a display apparatus; means for displaying, via the display apparatus, a representation of image data captured via the one or more cameras, wherein the representation includes a representation of a subject and the image data corresponds to depth data that includes depth data for the subject; means for displaying, via the display apparatus, a representation of a virtual avatar that is displayed in place of at least a portion of the representation of the subject, wherein the virtual avatar is placed at simulated depth relative to the representation of the subject as determined based on the depth data for the subject, displaying the representation of the virtual avatar includes: means in accordance with a determination, based on the depth data, that a first portion of the virtual avatar satisfies a set of depth-based display criteria, wherein the depth-based display criteria include a requirement that the depth data for the subject indicate that the first portion of the virtual avatar has a simulated depth that is in front of a corresponding first portion of the subject, in order for the depth-based display criteria to be met, for including as part of the representation of the virtual avatar, a representation of the first portion of the virtual avatar that is displayed in place of the first portion of the subject; and means in accordance with a determination, based on the depth data, that the first portion of the virtual avatar does not satisfy the set of depth-based display criteria for the first portion of the subject, for excluding, from the representation of the virtual avatar, the representation of the first portion of the virtual avatar and displaying the first portion of the subject in the region that would have been occupied by the first portion of the virtual avatar.

[0031] Executable instructions for performing these functions are, optionally, included in a non-transitory computer-readable storage medium or other computer program product configured for execution by one or more processors. Executable instructions for performing these functions are, optionally, included in a transitory computer-readable storage medium or other computer program product configured for execution by one or more processors.

[0032] Thus, devices are provided with faster, more efficient methods and interfaces for displaying visual effects, thereby increasing the effectiveness, efficiency, and user satisfaction with such devices. Such methods and interfaces may complement or replace other methods for displaying visual effects.

DESCRIPTION OF THE FIGURES

[0033] For a better understanding of the various described embodiments, reference should be made to the Description of Embodiments below, in conjunction with the following drawings in which like reference numerals refer to corresponding parts throughout the figures.

[0034] FIG. 1A is a block diagram illustrating a portable multifunction device with a touch-sensitive display in accordance with some embodiments.

[0035] FIG. 1B is a block diagram illustrating exemplary components for event handling in accordance with some embodiments.

[0036] FIG. 2 illustrates a portable multifunction device having a touch screen in accordance with some embodiments.

[0037] FIG. 3 is a block diagram of an exemplary multifunction device with a display and a touch-sensitive surface in accordance with some embodiments.

[0038] FIG. 4A illustrates an exemplary user interface for a menu of applications on a portable multifunction device in accordance with some embodiments.

[0039] FIG. 4B illustrates an exemplary user interface for a multifunction device with a touch-sensitive surface that is separate from the display in accordance with some embodiments.

[0040] FIG. 5A illustrates a personal electronic device in accordance with some embodiments.

[0041] FIG. 5B is a block diagram illustrating a personal electronic device in accordance with some embodiments.

[0042] FIGS. 6A-6BQ illustrate exemplary user interfaces for displaying visual effects in a messaging application.

[0043] FIGS. 7A and 7B are a flow diagram illustrating a method for displaying visual effects in a messaging application.

[0044] FIGS. 8A-8BQ illustrate exemplary user interfaces for displaying visual effects in a camera application.

[0045] FIGS. 9A and 9B are a flow diagram illustrating a method for displaying visual effects in a camera application.

[0046] FIGS. 10A-10AL illustrate exemplary user interfaces for displaying visual effects in a media item viewing mode.

[0047] FIGS. 11A and 11B are a flow diagram illustrating a method for displaying visual effects in a media item viewing mode.

[0048] FIGS. 12A-12AP illustrate exemplary user interfaces for displaying visual effects in a live video communication session.

[0049] FIGS. 13A and 13B are a flow diagram illustrating a method for displaying visual effects in a live video communication session.

[0050] FIGS. 14A-14M illustrate exemplary user interfaces for displaying visual effects in a camera application.

[0051] FIGS. 15A and 15B are a flow diagram illustrating a method for displaying visual effects in a camera application.

DESCRIPTION OF EMBODIMENTS

[0052] The following description sets forth exemplary methods, parameters, and the like. It should be recognized, however, that such description is not intended as a limitation on the scope of the present disclosure but is instead provided as a description of exemplary embodiments.

[0053] There is a need for electronic devices that provide efficient methods and interfaces for displaying visual effects. For example, while programs already exist for displaying visual effects, these programs are inefficient and difficult to use compared to the techniques below, which allow a user to displaying visual effects in various applications. Such techniques can reduce the cognitive burden on a user who displays visual effects in an application, thereby enhancing productivity. Further, such techniques can reduce processor and battery power otherwise wasted on redundant user inputs.

[0054] Below, FIGS. 1A-1B, 2, 3, 4A-4B, and 5A-5B provide a description of exemplary devices for performing the techniques for managing event notifications.

[0055] FIGS. 6A-6BQ illustrate exemplary user interfaces for displaying visual effects in a messaging application. FIGS. 7A and 7B are a flow diagram illustrating methods of displaying visual effects in a messaging application in accordance with some embodiments. The user interfaces in FIGS. 6A-6BQ are used to illustrate the processes described below, including the processes in FIGS. 7A and 7B.

[0056] FIGS. 8A-8BQ illustrate exemplary user interfaces for displaying visual effects in a camera application. FIGS. 9A and 9B are a flow diagram illustrating methods of displaying visual effects in a camera application in accordance with some embodiments. The user interfaces in FIGS. 8A-8BQ are used to illustrate the processes described below, including the processes in FIGS. 9A and 9B.

[0057] FIGS. 10A-10AL illustrate exemplary user interfaces for displaying visual effects in a camera application. FIGS. 11A and 11B are a flow diagram illustrating methods of displaying visual effects in a media item viewing mode in accordance with some embodiments. The user interfaces in FIGS. 10A-10AL are used to illustrate the processes described below, including the processes in FIGS. 11A and 11B.

[0058] FIGS. 12A-12AP illustrate exemplary user interfaces for displaying visual effects in a live video communication session. FIGS. 13A and 13B are a flow diagram illustrating methods of displaying visual effects in a live video communication session in accordance with some embodiments. The user interfaces in FIGS. 12A-12AP are used to illustrate the processes described below, including the processes in FIGS. 13A and 13B.

[0059] FIGS. 14A-14M illustrate exemplary user interfaces for displaying visual effects in a camera application. FIGS. 15A and 15B are a flow diagram illustrating methods of displaying visual effects in a camera application in accordance with some embodiments. The user interfaces in FIGS. 14A-14M are used to illustrate the processes described below, including the processes in FIGS. 15A and 15B.

[0060] Although the following description uses terms “first,” “second,” etc. to describe various elements, these elements should not be limited by the terms. These terms are only used to distinguish one element from another. For example, a first touch could be termed a second touch, and, similarly, a second touch could be termed a first touch, without departing from the scope of the various described embodiments. The first touch and the second touch are both touches, but they are not the same touch.

[0061] The terminology used in the description of the various described embodiments herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used in the description of the various described embodiments and the appended claims, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “includes,” “including,” “comprises,” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.

[0062] The term “if” is, optionally, construed to mean “when” or “upon” or “in response to determining” or “in response to detecting,” depending on the context. Similarly, the phrase “if it is determined” or “if [a stated condition or event] is detected” is, optionally, construed to mean “upon determining” or “in response to determining” or “upon detecting [the stated condition or event]” or “in response to detecting [the stated condition or event],” depending on the context.

[0063] Embodiments of electronic devices, user interfaces for such devices, and associated processes for using such devices are described. In some embodiments, the device is a portable communications device, such as a mobile telephone, that also contains other functions, such as PDA and/or music player functions. Exemplary embodiments of portable multifunction devices include, without limitation, the iPhone.RTM., iPod Touch.RTM., and iPad.RTM. devices from Apple Inc. of Cupertino, Calif. Other portable electronic devices, such as laptops or tablet computers with touch-sensitive surfaces (e.g., touch screen displays and/or touchpads), are, optionally, used. It should also be understood that, in some embodiments, the device is not a portable communications device, but is a desktop computer with a touch-sensitive surface (e.g., a touch screen display and/or a touchpad).

[0064] In the discussion that follows, an electronic device that includes a display and a touch-sensitive surface is described. It should be understood, however, that the electronic device optionally includes one or more other physical user-interface devices, such as a physical keyboard, a mouse, and/or a joystick.

[0065] The device typically supports a variety of applications, such as one or more of the following: a drawing application, a presentation application, a word processing application, a website creation application, a disk authoring application, a spreadsheet application, a gaming application, a telephone application, a video conferencing application, an e-mail application, an instant messaging application, a workout support application, a photo management application, a digital camera application, a digital video camera application, a web browsing application, a digital music player application, and/or a digital video player application.

[0066] The various applications that are executed on the device optionally use at least one common physical user-interface device, such as the touch-sensitive surface. One or more functions of the touch-sensitive surface as well as corresponding information displayed on the device are, optionally, adjusted and/or varied from one application to the next and/or within a respective application. In this way, a common physical architecture (such as the touch-sensitive surface) of the device optionally supports the variety of applications with user interfaces that are intuitive and transparent to the user.

[0067] Attention is now directed toward embodiments of portable devices with touch-sensitive displays. FIG. 1A is a block diagram illustrating portable multifunction device 100 with touch-sensitive display system 112 in accordance with some embodiments. Touch-sensitive display 112 is sometimes called a “touch screen” for convenience and is sometimes known as or called a “touch-sensitive display system.” Device 100 includes memory 102 (which optionally includes one or more computer-readable storage mediums), memory controller 122, one or more processing units (CPUs) 120, peripherals interface 118, RF circuitry 108, audio circuitry 110, speaker 111, microphone 113, input/output (I/O) subsystem 106, other input control devices 116, and external port 124. Device 100 optionally includes one or more optical sensors 164. Device 100 optionally includes one or more contact intensity sensors 165 for detecting intensity of contacts on device 100 (e.g., a touch-sensitive surface such as touch-sensitive display system 112 of device 100). Device 100 optionally includes one or more tactile output generators 167 for generating tactile outputs on device 100 (e.g., generating tactile outputs on a touch-sensitive surface such as touch-sensitive display system 112 of device 100 or touchpad 355 of device 300). These components optionally communicate over one or more communication buses or signal lines 103.

[0068] As used in the specification and claims, the term “intensity” of a contact on a touch-sensitive surface refers to the force or pressure (force per unit area) of a contact (e.g., a finger contact) on the touch-sensitive surface, or to a substitute (proxy) for the force or pressure of a contact on the touch-sensitive surface. The intensity of a contact has a range of values that includes at least four distinct values and more typically includes hundreds of distinct values (e.g., at least 256). Intensity of a contact is, optionally, determined (or measured) using various approaches and various sensors or combinations of sensors. For example, one or more force sensors underneath or adjacent to the touch-sensitive surface are, optionally, used to measure force at various points on the touch-sensitive surface. In some implementations, force measurements from multiple force sensors are combined (e.g., a weighted average) to determine an estimated force of a contact. Similarly, a pressure-sensitive tip of a stylus is, optionally, used to determine a pressure of the stylus on the touch-sensitive surface. Alternatively, the size of the contact area detected on the touch-sensitive surface and/or changes thereto, the capacitance of the touch-sensitive surface proximate to the contact and/or changes thereto, and/or the resistance of the touch-sensitive surface proximate to the contact and/or changes thereto are, optionally, used as a substitute for the force or pressure of the contact on the touch-sensitive surface. In some implementations, the substitute measurements for contact force or pressure are used directly to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is described in units corresponding to the substitute measurements). In some implementations, the substitute measurements for contact force or pressure are converted to an estimated force or pressure, and the estimated force or pressure is used to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is a pressure threshold measured in units of pressure). Using the intensity of a contact as an attribute of a user input allows for user access to additional device functionality that may otherwise not be accessible by the user on a reduced-size device with limited real estate for displaying affordances (e.g., on a touch-sensitive display) and/or receiving user input (e.g., via a touch-sensitive display, a touch-sensitive surface, or a physical/mechanical control such as a knob or a button).

[0069] As used in the specification and claims, the term “tactile output” refers to physical displacement of a device relative to a previous position of the device, physical displacement of a component (e.g., a touch-sensitive surface) of a device relative to another component (e.g., housing) of the device, or displacement of the component relative to a center of mass of the device that will be detected by a user with the user’s sense of touch. For example, in situations where the device or the component of the device is in contact with a surface of a user that is sensitive to touch (e.g., a finger, palm, or other part of a user’s hand), the tactile output generated by the physical displacement will be interpreted by the user as a tactile sensation corresponding to a perceived change in physical characteristics of the device or the component of the device. For example, movement of a touch-sensitive surface (e.g., a touch-sensitive display or trackpad) is, optionally, interpreted by the user as a “down click” or “up click” of a physical actuator button. In some cases, a user will feel a tactile sensation such as an “down click” or “up click” even when there is no movement of a physical actuator button associated with the touch-sensitive surface that is physically pressed (e.g., displaced) by the user’s movements. As another example, movement of the touch-sensitive surface is, optionally, interpreted or sensed by the user as “roughness” of the touch-sensitive surface, even when there is no change in smoothness of the touch-sensitive surface. While such interpretations of touch by a user will be subject to the individualized sensory perceptions of the user, there are many sensory perceptions of touch that are common to a large majority of users. Thus, when a tactile output is described as corresponding to a particular sensory perception of a user (e.g., an “up click,” a “down click,” “roughness”), unless otherwise stated, the generated tactile output corresponds to physical displacement of the device or a component thereof that will generate the described sensory perception for a typical (or average) user.

[0070] It should be appreciated that device 100 is only one example of a portable multifunction device, and that device 100 optionally has more or fewer components than shown, optionally combines two or more components, or optionally has a different configuration or arrangement of the components. The various components shown in FIG. 1A are implemented in hardware, software, or a combination of both hardware and software, including one or more signal processing and/or application-specific integrated circuits.

[0071] Memory 102 optionally includes high-speed random access memory and optionally also includes non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices. Memory controller 122 optionally controls access to memory 102 by other components of device 100.

[0072] Peripherals interface 118 can be used to couple input and output peripherals of the device to CPU 120 and memory 102. The one or more processors 120 run or execute various software programs and/or sets of instructions stored in memory 102 to perform various functions for device 100 and to process data. In some embodiments, peripherals interface 118, CPU 120, and memory controller 122 are, optionally, implemented on a single chip, such as chip 104. In some other embodiments, they are, optionally, implemented on separate chips.

[0073] RF (radio frequency) circuitry 108 receives and sends RF signals, also called electromagnetic signals. RF circuitry 108 converts electrical signals to/from electromagnetic signals and communicates with communications networks and other communications devices via the electromagnetic signals. RF circuitry 108 optionally includes well-known circuitry for performing these functions, including but not limited to an antenna system, an RF transceiver, one or more amplifiers, a tuner, one or more oscillators, a digital signal processor, a CODEC chipset, a subscriber identity module (SIM) card, memory, and so forth. RF circuitry 108 optionally communicates with networks, such as the Internet, also referred to as the World Wide Web (WWW), an intranet and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN) and/or a metropolitan area network (MAN), and other devices by wireless communication. The RF circuitry 108 optionally includes well-known circuitry for detecting near field communication (NFC) fields, such as by a short-range communication radio. The wireless communication optionally uses any of a plurality of communications standards, protocols, and technologies, including but not limited to Global System for Mobile Communications (GSM), Enhanced Data GSM Environment (EDGE), high-speed downlink packet access (HSDPA), high-speed uplink packet access (HSUPA), Evolution, Data-Only (EV-DO), HSPA, HSPA+, Dual-Cell HSPA (DC-HSPDA), long term evolution (LTE), near field communication (NFC), wideband code division multiple access (W-CDMA), code division multiple access (CDMA), time division multiple access (TDMA), Bluetooth, Bluetooth Low Energy (BTLE), Wireless Fidelity (Wi-Fi) (e.g., IEEE 802.11a, IEEE 802.11b, IEEE 802.11g, IEEE 802.11n, and/or IEEE 802.11ac), voice over Internet Protocol (VoIP), Wi-MAX, a protocol for e-mail (e.g., Internet message access protocol (IMAP) and/or post office protocol (POP)), instant messaging (e.g., extensible messaging and presence protocol (XMPP), Session Initiation Protocol for Instant Messaging and Presence Leveraging Extensions (SIMPLE), Instant Messaging and Presence Service (IMPS)), and/or Short Message Service (SMS), or any other suitable communication protocol, including communication protocols not yet developed as of the filing date of this document.

[0074] Audio circuitry 110, speaker 111, and microphone 113 provide an audio interface between a user and device 100. Audio circuitry 110 receives audio data from peripherals interface 118, converts the audio data to an electrical signal, and transmits the electrical signal to speaker 111. Speaker 111 converts the electrical signal to human-audible sound waves. Audio circuitry 110 also receives electrical signals converted by microphone 113 from sound waves. Audio circuitry 110 converts the electrical signal to audio data and transmits the audio data to peripherals interface 118 for processing. Audio data is, optionally, retrieved from and/or transmitted to memory 102 and/or RF circuitry 108 by peripherals interface 118. In some embodiments, audio circuitry 110 also includes a headset jack (e.g., 212, FIG. 2). The headset jack provides an interface between audio circuitry 110 and removable audio input/output peripherals, such as output-only headphones or a headset with both output (e.g., a headphone for one or both ears) and input (e.g., a microphone).

[0075] I/O subsystem 106 couples input/output peripherals on device 100, such as touch screen 112 and other input control devices 116, to peripherals interface 118. I/O subsystem 106 optionally includes display controller 156, optical sensor controller 158, depth camera controller 169, intensity sensor controller 159, haptic feedback controller 161, and one or more input controllers 160 for other input or control devices. The one or more input controllers 160 receive/send electrical signals from/to other input control devices 116. The other input control devices 116 optionally include physical buttons (e.g., push buttons, rocker buttons, etc.), dials, slider switches, joysticks, click wheels, and so forth. In some alternate embodiments, input controller(s) 160 are, optionally, coupled to any (or none) of the following: a keyboard, an infrared port, a USB port, and a pointer device such as a mouse. The one or more buttons (e.g., 208, FIG. 2) optionally include an up/down button for volume control of speaker 111 and/or microphone 113. The one or more buttons optionally include a push button (e.g., 206, FIG. 2).

[0076] A quick press of the push button optionally disengages a lock of touch screen 112 or optionally begins a process that uses gestures on the touch screen to unlock the device, as described in U.S. patent application Ser. No. 11/322,549, “Unlocking a Device by Performing Gestures on an Unlock Image,” filed Dec. 23, 2005, U.S. Pat. No. 7,657,849, which is hereby incorporated by reference in its entirety. A longer press of the push button (e.g., 206) optionally turns power to device 100 on or off. The functionality of one or more of the buttons are, optionally, user-customizable. Touch screen 112 is used to implement virtual or soft buttons and one or more soft keyboards.

[0077] Touch-sensitive display 112 provides an input interface and an output interface between the device and a user. Display controller 156 receives and/or sends electrical signals from/to touch screen 112. Touch screen 112 displays visual output to the user. The visual output optionally includes graphics, text, icons, video, and any combination thereof (collectively termed “graphics”). In some embodiments, some or all of the visual output optionally corresponds to user-interface objects.

[0078] Touch screen 112 has a touch-sensitive surface, sensor, or set of sensors that accepts input from the user based on haptic and/or tactile contact. Touch screen 112 and display controller 156 (along with any associated modules and/or sets of instructions in memory 102) detect contact (and any movement or breaking of the contact) on touch screen 112 and convert the detected contact into interaction with user-interface objects (e.g., one or more soft keys, icons, web pages, or images) that are displayed on touch screen 112. In an exemplary embodiment, a point of contact between touch screen 112 and the user corresponds to a finger of the user.

[0079] Touch screen 112 optionally uses LCD (liquid crystal display) technology, LPD (light emitting polymer display) technology, or LED (light emitting diode) technology, although other display technologies are used in other embodiments. Touch screen 112 and display controller 156 optionally detect contact and any movement or breaking thereof using any of a plurality of touch sensing technologies now known or later developed, including but not limited to capacitive, resistive, infrared, and surface acoustic wave technologies, as well as other proximity sensor arrays or other elements for determining one or more points of contact with touch screen 112. In an exemplary embodiment, projected mutual capacitance sensing technology is used, such as that found in the iPhone.RTM. and iPod Touch.RTM. from Apple Inc. of Cupertino, Calif.

[0080] A touch-sensitive display in some embodiments of touch screen 112 is, optionally, analogous to the multi-touch sensitive touchpads described in the following U.S. Pat. No. 6,323,846 (Westerman et al.), U.S. Pat. No. 6,570,557 (Westerman et al.), and/or U.S. Pat. No. 6,677,932 (Westerman), and/or U.S. Patent Publication 2002/0015024A1, each of which is hereby incorporated by reference in its entirety. However, touch screen 112 displays visual output from device 100, whereas touch-sensitive touchpads do not provide visual output.

[0081] A touch-sensitive display in some embodiments of touch screen 112 is described in the following applications: (1) U.S. patent application Ser. No. 11/381,313, “Multipoint Touch Surface Controller,” filed May 2, 2006; (2) U.S. patent application Ser. No. 10/840,862, “Multipoint Touchscreen,” filed May 6, 2004; (3) U.S. patent application Ser. No. 10/903,964, “Gestures For Touch Sensitive Input Devices,” filed Jul. 30, 2004; (4) U.S. patent application Ser. No. 11/048,264, “Gestures For Touch Sensitive Input Devices,” filed Jan. 31, 2005; (5) U.S. patent application Ser. No. 11/038,590, “Mode-Based Graphical User Interfaces For Touch Sensitive Input Devices,” filed Jan. 18, 2005; (6) U.S. patent application Ser. No. 11/228,758, “Virtual Input Device Placement On A Touch Screen User Interface,” filed Sep. 16, 2005; (7) U.S. patent application Ser. No. 11/228,700, “Operation Of A Computer With A Touch Screen Interface,” filed Sep. 16, 2005; (8) U.S. patent application Ser. No. 11/228,737, “Activating Virtual Keys Of A Touch-Screen Virtual Keyboard,” filed Sep. 16, 2005; and (9) U.S. patent application Ser. No. 11/367,749, “Multi-Functional Hand-Held Device,” filed Mar. 3, 2006. All of these applications are incorporated by reference herein in their entirety.

[0082] Touch screen 112 optionally has a video resolution in excess of 100 dpi. In some embodiments, the touch screen has a video resolution of approximately 160 dpi. The user optionally makes contact with touch screen 112 using any suitable object or appendage, such as a stylus, a finger, and so forth. In some embodiments, the user interface is designed to work primarily with finger-based contacts and gestures, which can be less precise than stylus-based input due to the larger area of contact of a finger on the touch screen. In some embodiments, the device translates the rough finger-based input into a precise pointer/cursor position or command for performing the actions desired by the user.

[0083] In some embodiments, in addition to the touch screen, device 100 optionally includes a touchpad for activating or deactivating particular functions. In some embodiments, the touchpad is a touch-sensitive area of the device that, unlike the touch screen, does not display visual output. The touchpad is, optionally, a touch-sensitive surface that is separate from touch screen 112 or an extension of the touch-sensitive surface formed by the touch screen.

[0084] Device 100 also includes power system 162 for powering the various components. Power system 162 optionally includes a power management system, one or more power sources (e.g., battery, alternating current (AC)), a recharging system, a power failure detection circuit, a power converter or inverter, a power status indicator (e.g., a light-emitting diode (LED)) and any other components associated with the generation, management and distribution of power in portable devices.

[0085] Device 100 optionally also includes one or more optical sensors 164. FIG. 1A shows an optical sensor coupled to optical sensor controller 158 in I/O subsystem 106. Optical sensor 164 optionally includes charge-coupled device (CCD) or complementary metal-oxide semiconductor (CMOS) phototransistors. Optical sensor 164 receives light from the environment, projected through one or more lenses, and converts the light to data representing an image. In conjunction with imaging module 143 (also called a camera module), optical sensor 164 optionally captures still images or video. In some embodiments, an optical sensor is located on the back of device 100, opposite touch screen display 112 on the front of the device so that the touch screen display is enabled for use as a viewfinder for still and/or video image acquisition. In some embodiments, an optical sensor is located on the front of the device so that the user’s image is, optionally, obtained for video conferencing while the user views the other video conference participants on the touch screen display. In some embodiments, the position of optical sensor 164 can be changed by the user (e.g., by rotating the lens and the sensor in the device housing) so that a single optical sensor 164 is used along with the touch screen display for both video conferencing and still and/or video image acquisition.

[0086] Device 100 optionally also includes one or more depth camera sensors 175. FIG. 1A shows a depth camera sensor coupled to depth camera controller 169 in I/O subsystem 106. Depth camera sensor 175 receives data from the environment to create a three dimensional model of an object (e.g., a face) within a scene from a viewpoint (e.g., a depth camera sensor). In some embodiments, in conjunction with imaging module 143 (also called a camera module), depth camera sensor 175 is optionally used to determine a depth map of different portions of an image captured by the imaging module 143. In some embodiments, a depth camera sensor is located on the front of device 100 so that the user’s image with depth information is, optionally, obtained for video conferencing while the user views the other video conference participants on the touch screen display and to capture selfies with depth map data. In some embodiments, the depth camera sensor 175 is located on the back of device, or on the back and the front of the device 100. In some embodiments, the position of depth camera sensor 175 can be changed by the user (e.g., by rotating the lens and the sensor in the device housing) so that a depth camera sensor 175 is used along with the touch screen display for both video conferencing and still and/or video image acquisition.

[0087] In some embodiments, a depth map (e.g., depth map image) contains information (e.g., values) that relates to the distance of objects in a scene from a viewpoint (e.g., a camera, an optical sensor, a depth camera sensor). In one embodiment of a depth map, each depth pixel defines the position in the viewpoint’s Z-axis where its corresponding two-dimensional pixel is located. In some embodiments, a depth map is composed of pixels wherein each pixel is defined by a value (e.g., 0-255). For example, the “0” value represents pixels that are located at the most distant place in a “three dimensional” scene and the “255” value represents pixels that are located closest to a viewpoint (e.g., a camera, an optical sensor, a depth camera sensor) in the “three dimensional” scene. In other embodiments, a depth map represents the distance between an object in a scene and the plane of the viewpoint. In some embodiments, the depth map includes information about the relative depth of various features of an object of interest in view of the depth camera (e.g., the relative depth of eyes, nose, mouth, ears of a user’s face). In some embodiments, the depth map includes information that enables the device to determine contours of the object of interest in a z direction.

[0088] Device 100 optionally also includes one or more contact intensity sensors 165. FIG. 1A shows a contact intensity sensor coupled to intensity sensor controller 159 in I/O subsystem 106. Contact intensity sensor 165 optionally includes one or more piezoresistive strain gauges, capacitive force sensors, electric force sensors, piezoelectric force sensors, optical force sensors, capacitive touch-sensitive surfaces, or other intensity sensors (e.g., sensors used to measure the force (or pressure) of a contact on a touch-sensitive surface). Contact intensity sensor 165 receives contact intensity information (e.g., pressure information or a proxy for pressure information) from the environment. In some embodiments, at least one contact intensity sensor is collocated with, or proximate to, a touch-sensitive surface (e.g., touch-sensitive display system 112). In some embodiments, at least one contact intensity sensor is located on the back of device 100, opposite touch screen display 112, which is located on the front of device 100.

[0089] Device 100 optionally also includes one or more proximity sensors 166. FIG. 1A shows proximity sensor 166 coupled to peripherals interface 118. Alternately, proximity sensor 166 is, optionally, coupled to input controller 160 in I/O subsystem 106. Proximity sensor 166 optionally performs as described in U.S. patent application Ser. No. 11/241,839, “Proximity Detector In Handheld Device”; Ser. No. 11/240,788, “Proximity Detector In Handheld Device”; Ser. No. 11/620,702, “Using Ambient Light Sensor To Augment Proximity Sensor Output”; Ser. No. 11/586,862, “Automated Response To And Sensing Of User Activity In Portable Devices”; and Ser. No. 11/638,251, “Methods And Systems For Automatic Configuration Of Peripherals,” which are hereby incorporated by reference in their entirety. In some embodiments, the proximity sensor turns off and disables touch screen 112 when the multifunction device is placed near the user’s ear (e.g., when the user is making a phone call).

[0090] Device 100 optionally also includes one or more tactile output generators 167. FIG. 1A shows a tactile output generator coupled to haptic feedback controller 161 in I/O subsystem 106. Tactile output generator 167 optionally includes one or more electroacoustic devices such as speakers or other audio components and/or electromechanical devices that convert energy into linear motion such as a motor, solenoid, electroactive polymer, piezoelectric actuator, electrostatic actuator, or other tactile output generating component (e.g., a component that converts electrical signals into tactile outputs on the device). Contact intensity sensor 165 receives tactile feedback generation instructions from haptic feedback module 133 and generates tactile outputs on device 100 that are capable of being sensed by a user of device 100. In some embodiments, at least one tactile output generator is collocated with, or proximate to, a touch-sensitive surface (e.g., touch-sensitive display system 112) and, optionally, generates a tactile output by moving the touch-sensitive surface vertically (e.g., in/out of a surface of device 100) or laterally (e.g., back and forth in the same plane as a surface of device 100). In some embodiments, at least one tactile output generator sensor is located on the back of device 100, opposite touch screen display 112, which is located on the front of device 100.

[0091] Device 100 optionally also includes one or more accelerometers 168. FIG. 1A shows accelerometer 168 coupled to peripherals interface 118. Alternately, accelerometer 168 is, optionally, coupled to an input controller 160 in I/O subsystem 106. Accelerometer 168 optionally performs as described in U.S. Patent Publication No. 20050190059, “Acceleration-based Theft Detection System for Portable Electronic Devices,” and U.S. Patent Publication No. 20060017692, “Methods And Apparatuses For Operating A Portable Device Based On An Accelerometer,” both of which are incorporated by reference herein in their entirety. In some embodiments, information is displayed on the touch screen display in a portrait view or a landscape view based on an analysis of data received from the one or more accelerometers. Device 100 optionally includes, in addition to accelerometer(s) 168, a magnetometer and a GPS (or GLONASS or other global navigation system) receiver for obtaining information concerning the location and orientation (e.g., portrait or landscape) of device 100.

[0092] In some embodiments, the software components stored in memory 102 include operating system 126, communication module (or set of instructions) 128, contact/motion module (or set of instructions) 130, graphics module (or set of instructions) 132, text input module (or set of instructions) 134, Global Positioning System (GPS) module (or set of instructions) 135, and applications (or sets of instructions) 136. Furthermore, in some embodiments, memory 102 (FIG. 1A) or 370 (FIG. 3) stores device/global internal state 157, as shown in FIGS. 1A and 3. Device/global internal state 157 includes one or more of: active application state, indicating which applications, if any, are currently active; display state, indicating what applications, views or other information occupy various regions of touch screen display 112; sensor state, including information obtained from the device’s various sensors and input control devices 116; and location information concerning the device’s location and/or attitude.

[0093] Operating system 126 (e.g., Darwin, RTXC, LINUX, UNIX, OS X, iOS, WINDOWS, or an embedded operating system such as VxWorks) includes various software components and/or drivers for controlling and managing general system tasks (e.g., memory management, storage device control, power management, etc.) and facilitates communication between various hardware and software components.

[0094] Communication module 128 facilitates communication with other devices over one or more external ports 124 and also includes various software components for handling data received by RF circuitry 108 and/or external port 124. External port 124 (e.g., Universal Serial Bus (USB), FIREWIRE, etc.) is adapted for coupling directly to other devices or indirectly over a network (e.g., the Internet, wireless LAN, etc.). In some embodiments, the external port is a multi-pin (e.g., 30-pin) connector that is the same as, or similar to and/or compatible with, the 30-pin connector used on iPod.RTM. (trademark of Apple Inc.) devices.

[0095] Contact/motion module 130 optionally detects contact with touch screen 112 (in conjunction with display controller 156) and other touch-sensitive devices (e.g., a touchpad or physical click wheel). Contact/motion module 130 includes various software components for performing various operations related to detection of contact, such as determining if contact has occurred (e.g., detecting a finger-down event), determining an intensity of the contact (e.g., the force or pressure of the contact or a substitute for the force or pressure of the contact), determining if there is movement of the contact and tracking the movement across the touch-sensitive surface (e.g., detecting one or more finger-dragging events), and determining if the contact has ceased (e.g., detecting a finger-up event or a break in contact). Contact/motion module 130 receives contact data from the touch-sensitive surface. Determining movement of the point of contact, which is represented by a series of contact data, optionally includes determining speed (magnitude), velocity (magnitude and direction), and/or an acceleration (a change in magnitude and/or direction) of the point of contact. These operations are, optionally, applied to single contacts (e.g., one finger contacts) or to multiple simultaneous contacts (e.g., “multitouch”/multiple finger contacts). In some embodiments, contact/motion module 130 and display controller 156 detect contact on a touchpad.

[0096] In some embodiments, contact/motion module 130 uses a set of one or more intensity thresholds to determine whether an operation has been performed by a user (e.g., to determine whether a user has “clicked” on an icon). In some embodiments, at least a subset of the intensity thresholds are determined in accordance with software parameters (e.g., the intensity thresholds are not determined by the activation thresholds of particular physical actuators and can be adjusted without changing the physical hardware of device 100). For example, a mouse “click” threshold of a trackpad or touch screen display can be set to any of a large range of predefined threshold values without changing the trackpad or touch screen display hardware. Additionally, in some implementations, a user of the device is provided with software settings for adjusting one or more of the set of intensity thresholds (e.g., by adjusting individual intensity thresholds and/or by adjusting a plurality of intensity thresholds at once with a system-level click “intensity” parameter).

[0097] Contact/motion module 130 optionally detects a gesture input by a user. Different gestures on the touch-sensitive surface have different contact patterns (e.g., different motions, timings, and/or intensities of detected contacts). Thus, a gesture is, optionally, detected by detecting a particular contact pattern. For example, detecting a finger tap gesture includes detecting a finger-down event followed by detecting a finger-up (liftoff) event at the same position (or substantially the same position) as the finger-down event (e.g., at the position of an icon). As another example, detecting a finger swipe gesture on the touch-sensitive surface includes detecting a finger-down event followed by detecting one or more finger-dragging events, and subsequently followed by detecting a finger-up (liftoff) event.

[0098] Graphics module 132 includes various known software components for rendering and displaying graphics on touch screen 112 or other display, including components for changing the visual impact (e.g., brightness, transparency, saturation, contrast, or other visual property) of graphics that are displayed. As used herein, the term “graphics” includes any object that can be displayed to a user, including, without limitation, text, web pages, icons (such as user-interface objects including soft keys), digital images, videos, animations, and the like.

[0099] In some embodiments, graphics module 132 stores data representing graphics to be used. Each graphic is, optionally, assigned a corresponding code. Graphics module 132 receives, from applications etc., one or more codes specifying graphics to be displayed along with, if necessary, coordinate data and other graphic property data, and then generates screen image data to output to display controller 156.

[0100] Haptic feedback module 133 includes various software components for generating instructions used by tactile output generator(s) 167 to produce tactile outputs at one or more locations on device 100 in response to user interactions with device 100.

[0101] Text input module 134, which is, optionally, a component of graphics module 132, provides soft keyboards for entering text in various applications (e.g., contacts 137, e-mail 140, IM 141, browser 147, and any other application that needs text input).

[0102] GPS module 135 determines the location of the device and provides this information for use in various applications (e.g., to telephone 138 for use in location-based dialing; to camera 143 as picture/video metadata; and to applications that provide location-based services such as weather widgets, local yellow page widgets, and map/navigation widgets).

[0103] Applications 136 optionally include the following modules (or sets of instructions), or a subset or superset thereof: [0104] Contacts module 137 (sometimes called an address book or contact list); [0105] Telephone module 138; [0106] Video conference module 139; [0107] E-mail client module 140; [0108] Instant messaging (IM) module 141; [0109] Workout support module 142; [0110] Camera module 143 for still and/or video images; [0111] Image management module 144; [0112] Video player module; [0113] Music player module; [0114] Browser module 147; [0115] Calendar module 148; [0116] Widget modules 149, which optionally include one or more of: weather widget 149-1, stocks widget 149-2, calculator widget 149-3, alarm clock widget 149-4, dictionary widget 149-5, and other widgets obtained by the user, as well as user-created widgets 149-6; [0117] Widget creator module 150 for making user-created widgets 149-6; [0118] Search module 151; [0119] Video and music player module 152, which merges video player module and music player module; [0120] Notes module 153; [0121] Map module 154; and/or [0122] Online video module 155.

[0123] Examples of other applications 136 that are, optionally, stored in memory 102 include other word processing applications, other image editing applications, drawing applications, presentation applications, JAVA-enabled applications, encryption, digital rights management, voice recognition, and voice replication.

[0124] In conjunction with touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, contacts module 137 are, optionally, used to manage an address book or contact list (e.g., stored in application internal state 192 of contacts module 137 in memory 102 or memory 370), including: adding name(s) to the address book; deleting name(s) from the address book; associating telephone number(s), e-mail address(es), physical address(es) or other information with a name; associating an image with a name; categorizing and sorting names; providing telephone numbers or e-mail addresses to initiate and/or facilitate communications by telephone 138, video conference module 139, e-mail 140, or IM 141; and so forth.

[0125] In conjunction with RF circuitry 108, audio circuitry 110, speaker 111, microphone 113, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, telephone module 138 are optionally, used to enter a sequence of characters corresponding to a telephone number, access one or more telephone numbers in contacts module 137, modify a telephone number that has been entered, dial a respective telephone number, conduct a conversation, and disconnect or hang up when the conversation is completed. As noted above, the wireless communication optionally uses any of a plurality of communications standards, protocols, and technologies.

[0126] In conjunction with RF circuitry 108, audio circuitry 110, speaker 111, microphone 113, touch screen 112, display controller 156, optical sensor 164, optical sensor controller 158, contact/motion module 130, graphics module 132, text input module 134, contacts module 137, and telephone module 138, video conference module 139 includes executable instructions to initiate, conduct, and terminate a video conference between a user and one or more other participants in accordance with user instructions.

[0127] In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, e-mail client module 140 includes executable instructions to create, send, receive, and manage e-mail in response to user instructions. In conjunction with image management module 144, e-mail client module 140 makes it very easy to create and send e-mails with still or video images taken with camera module 143.

[0128] In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, the instant messaging module 141 includes executable instructions to enter a sequence of characters corresponding to an instant message, to modify previously entered characters, to transmit a respective instant message (for example, using a Short Message Service (SMS) or Multimedia Message Service (MMS) protocol for telephony-based instant messages or using XMPP, SIMPLE, or IMPS for Internet-based instant messages), to receive instant messages, and to view received instant messages. In some embodiments, transmitted and/or received instant messages optionally include graphics, photos, audio files, video files and/or other attachments as are supported in an MMS and/or an Enhanced Messaging Service (EMS). As used herein, “instant messaging” refers to both telephony-based messages (e.g., messages sent using SMS or MMS) and Internet-based messages (e.g., messages sent using XMPP, SIMPLE, or IMPS).

[0129] In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, text input module 134, GPS module 135, map module 154, and music player module, workout support module 142 includes executable instructions to create workouts (e.g., with time, distance, and/or calorie burning goals); communicate with workout sensors (sports devices); receive workout sensor data; calibrate sensors used to monitor a workout; select and play music for a workout; and display, store, and transmit workout data.

[0130] In conjunction with touch screen 112, display controller 156, optical sensor(s) 164, optical sensor controller 158, contact/motion module 130, graphics module 132, and image management module 144, camera module 143 includes executable instructions to capture still images or video (including a video stream) and store them into memory 102, modify characteristics of a still image or video, or delete a still image or video from memory 102.

[0131] In conjunction with touch screen 112, display controller 156, contact/motion module 130, graphics module 132, text input module 134, and camera module 143, image management module 144 includes executable instructions to arrange, modify (e.g., edit), or otherwise manipulate, label, delete, present (e.g., in a digital slide show or album), and store still and/or video images.

[0132] In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, browser module 147 includes executable instructions to browse the Internet in accordance with user instructions, including searching, linking to, receiving, and displaying web pages or portions thereof, as well as attachments and other files linked to web pages.

[0133] In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, text input module 134, e-mail client module 140, and browser module 147, calendar module 148 includes executable instructions to create, display, modify, and store calendars and data associated with calendars (e.g., calendar entries, to-do lists, etc.) in accordance with user instructions.

[0134] In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, text input module 134, and browser module 147, widget modules 149 are mini-applications that are, optionally, downloaded and used by a user (e.g., weather widget 149-1, stocks widget 149-2, calculator widget 149-3, alarm clock widget 149-4, and dictionary widget 149-5) or created by the user (e.g., user-created widget 149-6). In some embodiments, a widget includes an HTML (Hypertext Markup Language) file, a CSS (Cascading Style Sheets) file, and a JavaScript file. In some embodiments, a widget includes an XML (Extensible Markup Language) file and a JavaScript file (e.g., Yahoo! Widgets).

[0135] In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, text input module 134, and browser module 147, the widget creator module 150 are, optionally, used by a user to create widgets (e.g., turning a user-specified portion of a web page into a widget).

[0136] In conjunction with touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, search module 151 includes executable instructions to search for text, music, sound, image, video, and/or other files in memory 102 that match one or more search criteria (e.g., one or more user-specified search terms) in accordance with user instructions.

[0137] In conjunction with touch screen 112, display controller 156, contact/motion module 130, graphics module 132, audio circuitry 110, speaker 111, RF circuitry 108, and browser module 147, video and music player module 152 includes executable instructions that allow the user to download and play back recorded music and other sound files stored in one or more file formats, such as MP3 or AAC files, and executable instructions to display, present, or otherwise play back videos (e.g., on touch screen 112 or on an external, connected display via external port 124). In some embodiments, device 100 optionally includes the functionality of an MP3 player, such as an iPod (trademark of Apple Inc.).

[0138] In conjunction with touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, notes module 153 includes executable instructions to create and manage notes, to-do lists, and the like in accordance with user instructions.

[0139] In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, text input module 134, GPS module 135, and browser module 147, map module 154 are, optionally, used to receive, display, modify, and store maps and data associated with maps (e.g., driving directions, data on stores and other points of interest at or near a particular location, and other location-based data) in accordance with user instructions.

[0140] In conjunction with touch screen 112, display controller 156, contact/motion module 130, graphics module 132, audio circuitry 110, speaker 111, RF circuitry 108, text input module 134, e-mail client module 140, and browser module 147, online video module 155 includes instructions that allow the user to access, browse, receive (e.g., by streaming and/or download), play back (e.g., on the touch screen or on an external, connected display via external port 124), send an e-mail with a link to a particular online video, and otherwise manage online videos in one or more file formats, such as H.264. In some embodiments, instant messaging module 141, rather than e-mail client module 140, is used to send a link to a particular online video. Additional description of the online video application can be found in U.S. Provisional Patent Application No. 60/936,562, “Portable Multifunction Device, Method, and Graphical User Interface for Playing Online Videos,” filed Jun. 20, 2007, and U.S. patent application Ser. No. 11/968,067, “Portable Multifunction Device, Method, and Graphical User Interface for Playing Online Videos,” filed Dec. 31, 2007, the contents of which are hereby incorporated by reference in their entirety.

发表评论

电子邮件地址不会被公开。 必填项已用*标注