Qualcomm Patent | Enhanced High-Level Signaling for Fisheye Virtual Reality Video

Patent: Enhanced High-Level Signaling for Fisheye Virtual Reality Video

Publication Number: 20190014305

Publication Date: 2019-01-10

Applicants: Qualcomm

Abstract

A method of processing a file including video data, including processing a file including fisheye video data, the file including a syntax structure including a plurality of syntax elements that specify attributes of the fisheye video data, wherein the plurality of syntax elements include one or more bits that indicate fisheye video type information, determining, based on the one or more bits of the syntax structure, the fisheye video type information for the fisheye video data, outputting, based on the determination, the fisheye video data for rendering.

Background

Digital video capabilities can be incorporated into a wide range of devices, including digital televisions, digital direct broadcast systems, wireless broadcast systems, personal digital assistants (PDAs), laptop or desktop computers, digital cameras, digital recording devices, digital media players, video gaming devices, video game consoles, cellular or satellite radio telephones, video teleconferencing devices, and the like. Digital video devices implement video compression techniques, such as those described in the standards defined by MPEG-2, MPEG-4, ITU-T H.263 or ITU-T H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), ITU-T H.265 (also referred to High Efficiency Video Coding (HEVC)), and extensions of such standards, to transmit and receive digital video information more efficiently.

Video compression techniques perform spatial prediction and/or temporal prediction to reduce or remove redundancy inherent in video sequences. For block-based video coding, a video frame or slice may be partitioned into macroblocks. Each macroblock can be further partitioned. Macroblocks in an intra-coded (I) frame or slice are encoded using spatial prediction with respect to neighboring macroblocks. Macroblocks in an inter-coded (P or B) frame or slice may use spatial prediction with respect to neighboring macroblocks in the same frame or slice or temporal prediction with respect to other reference frames.

After video (and other media data) data has been encoded, the video data may be packetized for transmission or storage. The video data may be assembled into a video file conforming to any of a variety of standards, such as the International Organization for Standardization (ISO) base media file format and extensions thereof, such as AVC.

Summary

In general, this disclosure describes functionality relating to virtual reality (VR)/360 degree video applications. More specifically, this disclosure describes enhanced high-level signaling for fisheye VR/360 video, in both container files and in the media presentation description of adaptive streaming formats such as dynamic adaptive streaming over HTTP (DASH). Although the techniques may be described herein in the context of the Omnidirectional MediA Format (OMAF) and/or DASH, or in other media formats, it should be understood that such techniques may apply generally to any virtual reality (VR) or 360 degree media formats. Also, although this disclosure may refer to file formats in the form of ISO base media file format (ISOBMFF), it should be understood that such file formats may apply generally across a variety of types of file formats.

In one example, this disclosure describes a method of processing a file including video data, the method comprising processing a file including fisheye video data, the file including a syntax structure including a plurality of syntax elements that specify attributes of the fisheye video data, wherein the plurality of syntax elements include one or more bits that indicate fisheye video type information, determining, based on the one or more bits of the syntax structure, the fisheye video type information for the fisheye video data, and outputting, based on the determination, the fisheye video data for rendering.

In another example, this disclosure describes an apparatus configured to process a file including video data, the apparatus comprising a memory configured to store the file, and one or more processors in communication with the memory, the one or more processors configured to process the file including fisheye video data, the file including a syntax structure including a plurality of syntax elements that specify attributes of the fisheye video data, wherein the plurality of syntax elements include one or more bits that indicate fisheye video type information, determine, based on the one or more bits of the syntax structure, the fisheye video type information for the fisheye video data, and output, based on the determination, the fisheye video data for rendering.

In another example, this disclosure describes an apparatus configured to process a file including video data, the apparatus comprising means for processing a file including fisheye video data, the file including a syntax structure including a plurality of syntax elements that specify attributes of the fisheye video data, wherein the plurality of syntax elements include one or more bits that indicate fisheye video type information, means for determining, based on the one or more bits of the syntax structure, the fisheye video type information for the fisheye video data, and means for outputting, based on the determination, the fisheye video data for rendering.

In another example, this disclosure describes a non-transitory computer-readable storage medium storing instructions that, when executed, cause one or more processors to process a file including fisheye video data, the file including a syntax structure including a plurality of syntax elements that specify attributes of the fisheye video data, wherein the plurality of syntax elements include one or more bits that indicate fisheye video type information, determine, based on the one or more bits of the syntax structure, the fisheye video type information for the fisheye video data, and output, based on the determination, the fisheye video data for rendering.

In another example, this disclosure describes a method of generating a file including video data, the method comprising receiving fisheye video data, generating a file including the fisheye video data, the file including a syntax structure including a plurality of syntax elements that specify attributes of the fisheye video data, wherein the plurality of syntax elements include one or more bits that indicate fisheye video type information, and outputting the file.

In another example, this disclosure describes an apparatus configured to generate a file including video data, the apparatus comprising a memory configured to store the file, and one or more processors in communication with the memory, the one or more processors configured to receive fisheye video data, generate the file including the fisheye video data, the file including a syntax structure including a plurality of syntax elements that specify attributes of the fisheye video data, wherein the plurality of syntax elements include one or more bits that indicate fisheye video type information, and output the file.

In another example, this disclosure describes an apparatus configured to generate a file including video data, the apparatus comprising means for receiving fisheye video data means for generating a file including the fisheye video data, the file including a syntax structure including a plurality of syntax elements that specify attributes of the fisheye video data, wherein the plurality of syntax elements include one or more bits that indicate fisheye video type information, and means for outputting the file.

In another example, this disclosure describes a non-transitory computer-readable storage medium storing instructions that, when executed, cause one or more processors to receive fisheye video data, generate a file including the fisheye video data, the file including a syntax structure including a plurality of syntax elements that specify attributes of the fisheye video data, wherein the plurality of syntax elements include one or more bits that indicate fisheye video type information, and output the file.

发表评论

电子邮件地址不会被公开。 必填项已用*标注